Energy Reduction Analysis at New Prague Wastewater Treatment Facility

Emily Wen MnTAP advisor: A.J. Van den Berghe

On-Site Supervisor: Scott Warner

UNIVERSITY OF MINNESOTA Driven to Discover™

University of Minnesota

Minnesota Technical Assistance Program

- Created in 1984
- University of Minnesota
- Staffed by Scientists and Engineers
- Process Specific Assistance
- Confidential and Non-regulatory

MnTAP Mission

Strengthening Minnesota businesses by improving efficiency, while saving money through energy, water and waste reduction.

- Businesses remain competitive
- Improve employee and public health
- Protect the environment

MnTAP Services

- Technical Assistance
 - Site assessment visits
 - Phone and e-mail requests
 - Intern program
 - Demonstrations/Research
- Minnesota Materials Exchange
- Communications and Outreach

Company Overview

- Remove contaminants from wastewater
- 7,700 residents
- Regulated by Minnesota Pollution Control Agency
- Class A wastewater facility
- Upgraded in 2010
- Many energy savings ideas implemented, knew of more opportunities but unsure how to proceed

City of New Prague Wastewater Plant Flow Diagram

Mn TAP

UNIVERSITY OF MINNESOTA⁶

Incentives to Change

- Operating budget covered by water and sewage fees
 - Have exceeded budget
 - Excess covered in city taxes
- Next MPCA permit may include more requirements
 - Require additional equipment
 - Minimize energy increase with optimizing
- SMMPA and MnTAP reached out to us to partner in energy savings
- St. Peter, MN had a successful project in 2016

Project Overview

1. Characterize energy consumption plant-wide

- Identify energy-intensive equipment
- Observe yearly consumption trends

2. Quantify scrubber/HVAC reductions

- Determine suitable # air changes per hour (ACH)
- Predict savings for reduced exhaust fan speeds

3. Assess Biological Aerated Filter (BAF) blower reduction

- Dissolved oxygen aeration model
- 4. Ultrasonic leak study
 - Find compressed air leaks
- 5. Lighting audit
 - Determine suitable LED replacements and resulting savings

EPA Energy Assessment Tool

- Track energy usage for small wastewater facilities
 - Excel spreadsheet
- Method:
 - Collect utility bills from 2014-2017
 - Collect motor specification data
- Focus on electricity reduction

Utility	Site Utility Use	Site Utility Costs	% of Costs
Electricity	2,183,200 kWh	\$166,663	76%
Natural Gas	79,167 CCF	\$48,180	22%
Water & Sewer	870,000 GAL	\$4,100	2%

\$718/MGAL Treated

Top Electrical Energy Use Systems

- #1 Odor Control
- #2 Sludge Handling
- **#3 BAF Treatment**
- #4 Non-process HVAC
- #5 Internal Plant Pumping
- Balance of Plant Identified
- Balance of Plant Unidentified

Quantify scrubber/HVAC reductions

Mn TAP

UNIVERSITY OF MINNESOTA

12

Option 1.1: 7.2 to 4.9 ACH → Implemented

ACH	Annual Energy Consumption	Annual Operating Cost
7.2	156,490 kWh 536 therms	\$11,900 \$332
4.9	50,3034 kWh 383 therms	\$3,825 \$240
Savings	106,000 kWh 150 therms	\$8,100

Option 1.2: Switch fans and reduce to 4.9 ACH

Swap biosolids and BAF scrubber fan

• Reduce fan flow rate from 7,600 to 5,283 ACFM

ACH	Annual Energy Consumption	Annual Operating Cost
4.9	102,618 kWh	\$7,800
Savings	21,035 kWh	\$1,600

Option 1.2: Further investigation/not recommended

- BAF and biosolids odor scrubbers are different models
 - Undetermined volumetric capacities
- Undetermined labor costs
 - Likely a week
- Requires further investigation by Evoqua engineers

BAF scrubber fan

Biosolids scrubber fan

15

Assess BAF Blower Reduction

UNIVERSITY OF MINNESOTA

16

Biological Aerated Filter (BAF)

Secondary treatment

- Removes total suspended solids (TSS), ammonia, and carbonaceous biological oxygen demand
- Microbes require oxygen
 - 0.5-2 mg/L dissolved oxygen (DO)

BAF schematic by Veolia/Kruger

Option 2.1: Adjust controls settings

- Reduces blower operating hours
- Optimal set point at 1.5 gallons per minute per sqft

Influent Load Contr	ol			
Constant Number Of Ce	lls In Filtration			
	Number Of Cells In Filtration:	1	4 Ea.	4
🔵 Constant Load	Biostyr Filter Velocity 1:	0	1.5 GPM/Ft ²	4
	Minimum Number Of Cells:	1	1Ea.	4
	Maximum Number Of Cells:	1	4 Ea.	4

New Prague SCADA set point screen shot

Option 2.1: Adjust SCADA settings→ **Implemented**

Condition	Annual Energy Consumption	Annual Operating Cost
2016 Baseline (min. 2 cells, TCV=1.0 gpm/sqft)	385,300 kWh	\$29,283
2017 Baseline (min 1 cell, TCV=1.5 gpm/sqft)	237,693 kWh	\$18,065

Savings	148,000 kWh	\$11,200
	-	•

Option 2.2: Install VFDs to BAF Blowers → **Recommended**

- Reduces power consumption during operation
- Eliminate inrush
 - Reduces electric costs
 - Increase blower lifespan

Allen Bradley PowerFlex 753, the proposed VFD for installation

20

Option 2.2: Install VFDs to BAF Blowers

UNIVERSITY OF MINNESOTA

21

Option 2.2: Install VFDs to BAF Blowers

Condition	Annual Energy Consumption	Annual Operating Cost
2017 Baseline (min 1 cell, TCV=1.5 gpm/sqft)	237,693 kWh	\$18,100
4.0 mg/L target DO	130,560 kWh	\$9,922

Savings	107,000 kWh	\$8,142
---------	-------------	---------

New Prague Effluent Requirements

Parameter	Limit (mg/L)	Limit Type	Effective Period
Dissolved Oxygen (DO)	7	Calendar Month Minimum	Jan-Dec
Carbonaceous Biological Oxygen			
Demand (CBOD), 05 Day	5	Calendar Month Average	Jan-Dec
Nitrogen, Ammonia, Total	7.7	Calendar Month Average	Dec-Mar
Nitrogen, Ammonia, Total	1.3	Calendar Month Average	Apr-May
Nitrogen, Ammonia, Total	1.0	Calendar Month Average	Jun-Sep
Nitrogen, Ammonia, Total	1.9	Calendar Month Average	Oct-Nov
Total Suspended Solids (TSS)	30	Calendar Month Average	Jan-Dec

University of Minnesota²³

Ultrasonic Leak Study

8 Leaks Found

Photo credit: Marcus Hendrickson

6 Additional Leaks Found

UNIVERSITY OF MINNESOTA²⁶

Option 3.1: Seal compressor leaks

Condition	Annual Energy Consumption	Annual loss
8 leaks	13,820+ kWh	\$1,050+

• Status: In progress

- 9 leaks fixed
- \$827+ saved annually
- Implementation Cost
 - \$220

Lighting Audit

LED Technology Constantly Improving

- New Prague WWTF lighting
 - 112 lights are on 24/7
- LED refits
 - Longer lifespan (50,000 hours)
 - Lower power consumption (18 watt)
 - Compatible with ballasts

LED exterior fixture in progress of installation

Main hall lighting

Stairwell lighting

UNIVERSITY OF MINNESOTA

Option 4.1: Upgrade lights to LED

Condition	Annual Energy Consumption	Annual Operating Cost
Fluorescent/MH/HPS	70,268 kWh	\$5,340
LED	41,654 kWh	\$3,165
Savings	28,613 kWh	\$2,175

Potential Savings Summary

Recommendations	Annual Reduction	Implementation Cost	Annual Savings	Payback Period	Status
Reduce ACH to 4.9	106,000 kWh 150 therms	\$0	\$8,100	-	Implemented
SCADA change and reduce DO to 4.0 mg/L using VFD	254,740 kWh	TBD	\$19,300	4-5 years	Recommended
Seal leaks	13,820 kWh	\$220	\$1,050+	2.6 months	In Progress
Upgrade to LED	28,600 kWh	TBD	\$2,100	2-3 years	Recommended
Totals	403,000 kWh 150 therms	TBD	\$30,550	TBD	-
					33

Future recommendations

- Reduce scrubber and make-up air unit to 4.0
 - Reduces 125,000 kWh and \$9,500
- Study VFD installation on main lift station pump effects
 - Eliminate inrush throughout facility
 - More efficient chemical feed
 - Prolong motor life
- Sludge aeration blower
 - Possible upgrades and installations
 - Contacted Aeration Industries International

Special thanks to the following

AJ Van den Berghe **Scott Warner** John Granlund Adam Jirak **Joe Wagner** Nathan Landwehr **Marcus Hendrickson** Kim Lee Lora Novotny **Jon Peterson Doug Swanson**

Devang Pujara Daryl Bond Mark Drake **Ryan Cairl** Jon Vanyo **Randy Keranen Daryld Miller Chad Lunder Eric Bennett** Jeff Boumeester **Bruce Stasney**

Thank you for listening!

Questions?

This project was funded in part by Southern Minnesota Municipal Power Agency

